Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • О. А. Логачев, А. А. Сальников, С. В. Смышляев, В. В. Ященко. Булевы функции в теории кодирования и криптологии
    Булевы функции в теории кодирования и криптологии
    О. А. Логачев, А. А. Сальников, С. В. Смышляев, В. В. Ященко
    В первой половине XX в. булевы функции приобрели фундаментальное значение для оснований математики. Вместе с тем длительное время булевы функции оставались невостребованными в прикладных областях. Существенные изменения произошли в середине XX в., когда бурное развитие техники связи, приборостроения и вычислительной техники потребовало создания адекватного математического аппарата. В этот период происходит становление таких прикладных отраслей математики, как теория конечных функциональных систем, теория информации, теория кодирования и, наконец, математическая криптография. Практика показала плодотворность применения аппарата теории булевых функций к проблемам анализа и синтеза дискретных устройств, осуществляющих обработку и преобразование информации. В книге впервые на русском языке в систематическом виде изложены криптографические и теоретико-кодовые аспекты использования аппарата теории булевых функций. При этом в книге нашли свое отражение, как классические результаты, так и результаты, опубликованные в последнее время. Для понимания книги достаточно сведений, имеющихся в университетских курсах по линейной алгебре, теории групп, теории конечных полей и полиномов, комбинаторике и дискретной математике. Помимо этого предполагается знакомство с основами теории вероятностей. Основой для книги послужили материалы курсов, читаемых авторами в МГУ для студентов механико-математического факультета и факультета вычислительной математики и кибернетики, специализирующихся по направлению "Информационная безопасность". Книга будет полезна студентам, аспирантам и научным работникам, интересующимся дискретной математикой, теорией кодирования и криптологией. Она может быть использована в том числе и как справочник.
  • В. Н. Сачков. Введение в комбинаторные методы дискретной математики
    Введение в комбинаторные методы дискретной математики
    В. Н. Сачков
    Книга содержит изложение ряда основных комбинаторных методов современной дискретной математики в систематизированном виде. Предпочтение отдается тем методам, которые носят перечислительный характер, наиболее отработаны теоретически и имеют наибольшее число приложений. Книга предназначена для студентов вузов, обучающихся по специальностям "Прикладная математика", "Кибернетика", "Криптография", "Компьютерная безопасность", а также для научных работников, работающих в области прикладной математики, кибернетики, защиты информации и криптографии. Во втором издании добавлена глава IX "Дискретные функции", добавлены разделы к некоторым другим главам, расширен круг задач.
  • К. К. Рыбников. Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах
    Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах
    К. К. Рыбников
    Учебное пособие содержит основные понятия дискретного анализа, изучение которых определяется учебными стандартами для большинства технических специальностей. Особое внимание автор уделяет связи непрерывного и дискретного математического аппарата. Большое количество задач, методы решения которых подробно проанализированы, дает возможность использовать данный материал не только для построения лекционного курса, но и для проведения практических занятий.
  • И. Х. Сигал, А. П. Иванова. Введение в прикладное дискретное программирование
    Введение в прикладное дискретное программирование
    И. Х. Сигал, А. П. Иванова
    В переработанном издании книги излагаются современные комбинаторные алгоритмы для решения задач дискретного программирования. Рассматриваются особенности этих задач и алгоритмы их решения. Основное внимание уделяется вычислительной реализации алгоритмов. Приводятся результаты экспериментального исследования алгоритмов для классических задач о ранце и о коммивояжере. Разработаны алгоритмы параллельных вычислений и изложены результаты вычислительных экспериментов для задачи о ранце. Приведены задачи для самостоятельной работы. Допущено Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению и специальности "Прикладная математика и информатика".
  • К. А. Рыбников. Введение в комбинаторный анализ
    Введение в комбинаторный анализ
    К. А. Рыбников
    В настоящей книге излагаются построенные на единой теоретической основе методы исследования дискретных систем и решения соответствующих комбинаторных задач. Рассмотрены: начала теории дискретных множеств, основные комбинаторные понятия и операции, логические методы, таблично-матричный аппарат, дискретные геометрические системы, методы решения экстремальных задач и методы вероятностного характера. Содержание взаимосвязано со сборником "Комбинаторный анализ: задачи и упражнения" (М., 1982).Для студентов математических специальностей университетов.
  • К. А. Рыбников. Введение в комбинаторный анализ
    Введение в комбинаторный анализ
    К. А. Рыбников
    В настоящей книге излагаются построенные на единой теоретической основе методы исследования дискретных систем и решения соответствующих комбинаторных задач. Рассмотрены: начала теории дискретных множеств, основные комбинаторные понятия и операции, логические методы, таблично-матричный аппарат, дискретные геометрические системы, методы решения экстремальных задач и методы вероятностного характера. Содержание взаимосвязано со сборником "Комбинаторный анализ: задачи и упражнения" (М., 1982).Для студентов математических специальностей университетов.
  • С. К. Ландо. Введение в дискретную математику
    Введение в дискретную математику
    С. К. Ландо
    В основу предлагаемой вниманию читателей книги легли записки семестрового курса лекций, читавшегося автором в течение нескольких лет первокурсникам факультета математики Высшей школы экономики. В курс включены начальные сведения о перечислительных задачах, о графах и их инвариантах, о конечных автоматах. Автор стремился связать изучаемый материал с тем, который излагается при изучении других предметов - в первую очередь, алгебры и математического анализа. В книге содержится большое количество задач, многие из которых снабжены решениями. Книга предназначена для студентов, изучающих математику и информатику, и преподавателей этих же предметов.
  • А. М. Райгородский. Вероятность и алгебра в комбинаторике
    Вероятность и алгебра в комбинаторике
    А. М. Райгородский
    Настоящая брошюра возникла на основе лекций, прочитанных автором на летней математической школе "Современная математика" в Дубне в 2006 г. В ней рассказывается о двух мощных методах современного дискретного анализа - вероятностном и алгебраическом. Оба эти метода широко применяются сейчас для решения различных задач экстремальной комбинаторики. В частности, многие важные аспекты таких классических проблем, как проблема Борсука или проблема отыскания чисел Рамсея, рассматриваются исключительно с позиций вероятностной и алгебраической технологий. Брошюра доступна студентам младших курсов и даже школьникам старших классов. Однако полезна она может быть всем, кто интересуется комбинаторикой. Первое издание книги вышло в 2008 году.
  • Михаил Краснов,Александр Киселев,Григорий Макаренко,Евгений Шикин,Владимир Заляпин,Александр Эвнин. Вся высшая математика. Том 7. Учебник
    Вся высшая математика. Том 7. Учебник
    Михаил Краснов,Александр Киселев,Григорий Макаренко,Евгений Шикин,Владимир Заляпин,Александр Эвнин
    Настоящий учебник впервые вышел в свет в виде двухтомника сначала на английском и испанском языках в 1990 году, а затем на французском. До сих пор он пользуется большим спросом за рубежом. В 1999 году книга стала лауреатом конкурса по созданию новых учебников Министерства образования России. Данный учебник охватывает практически все разделы математики, но при этом представляет собой не набор разрозненных глав, а единое целое. Седьмой том включает в себя материал по теории чисел, комбинаторике и теории графов. В первых двух главах тома рассматриваются элементы теории чисел и общей алгебры. Вводимые при этом понятия широко используются в других главах, в частности при изложении теории Пойа, позволяющей решать задачи пересчета объектов с точностью до того или иного отношения эквивалентности. В главе, посвященной комбинаторике, помимо начальных сведений о выборках излагается принцип включения-исключения, эффективно работающий при решении классических комбинаторных задач. Здесь также описывается аппарат производящих функций - мощное средство комбинаторного анализа. В заключительных главах вводятся основные понятия теории графов и матроидов, описываются некоторые эффективные алгоритмы. Учебник адресован студентам высших учебных заведений, в первую очередь будущим инженерам и экономистам.
  • Г. А. Клековкин, Л. П. Коннова, В. В. Коннов. Геометрическая теория графов. Учебное пособие
    Геометрическая теория графов. Учебное пособие
    Г. А. Клековкин, Л. П. Коннова, В. В. Коннов
    В учебном пособии представлены основы теории графов. В нем показаны неориентированные и ориентированные графы, освещены классические проблемы и вопросы теории графов. Книга содержит большое количество примеров, задач, упражнений и иллюстраций.
  • М. В. Триумфгородских. Дискретная математика и математическая логика для информатиков, экономистов и менеджеров
    Дискретная математика и математическая логика для информатиков, экономистов и менеджеров
    М. В. Триумфгородских
    В книге изложен ряд разделов и вопросов дискретной математики и математической логики, изучаемых главным образом на младших курсах вузов. В данное издание включены не только основные понятия и теоретические положения дисциплины, но также примеры, методы, приемы и алгоритмы решения прикладных задач. Книга может представлять интерес для широкого круга будущих специалистов, бакалавров и магистров соответствующих специальностей и направлении подготовки.
  • В. В. Тишин. Дискретная математика в примерах и задачах
    Дискретная математика в примерах и задачах
    В. В. Тишин
    Учебное пособие составлено на основании материалов лекционного курса, содержит краткую теорию, варианты заданий и примеры решения по следующим разделам дискретной математики: множества, декартовы произведения, соответствия, отношения, булевы функции, теория алгоритмов, предикаты, комбинаторика, конечные автоматы. Даны основные определения, необходимые для выполнения заданий. Для каждого типа задач предлагается по 30 вариантов заданий, приводится подробный образец решения. Для преподавателей и студентов технических вузов и университетов, аспирантов, научных работников и инженеров.
  • Н. П. Редькин. Дискретная математика
    Дискретная математика
    Н. П. Редькин
    Учебное пособие содержит основной материал обязательного курса "Дискретная математика", включающего 34 часа лекций и столько же практических занятий и читающегося на отделении механики механико-математического факультета МГУ с 1998 года. В нем в сжатой форме представлены для первоначального ознакомления несколько важных разделов дискретной математики: комбинаторный анализ; графы и сети; важнейшие классы управляющих систем - формулы алгебры логики, схемы из функциональных элементов, конечные автоматы; кодирование; примеры дискретных экстремальных задач и способов их решения. К каждой главе прилагаются задачи, самостоятельное решение которых, несомненно, будет способствовать более глубокому усвоению теоретического материала и лучшей подготовке к экзамену. Для студентов и аспирантов.
  • А. А. Казанский. Дискретная математика
    Дискретная математика
    А. А. Казанский
    В пособии изложены основные разделы современной дискретной математики. Рассматриваются вопросы, связанные с теорией множеств, теорией отношений, теорией графов и логикой. Материал построен на основе курса лекций, читаемого автором в технических вузах, в частности в Московском техническом университете связи и информатики (МТУСИ) в 2004-2008 г. В каждой главе рассмотрено большое число задач с подробными решениями, что позволяет эффективно и быстро осваивать изучаемую тему. Для студентов, обучающихся по специальности «Прикладная математика», а также для студентов технических и экономических факультетов, изучающих курс «Дискретная математика» и компьютерные технологии. Представляет интерес для тех, кто связан с использованием методов дискретной математики.
  • Ф. А. Новиков. Дискретная математика. Учебник
    Дискретная математика. Учебник
    Ф. А. Новиков
    Новое издание учебника было существенно переработано и дополнено, в нем изложены все основные разделы дискретной математики и описаны важнейшие алгоритмы на дискретных структурах данных. Основу книги составляет материал лекционного курса, который автор читает в Санкт-Петербургском политехническом университете Петра Великого. Книга имеет обширный справочный аппарат: указатель обозначений, детальный предметный указатель с переводом всех терминов на английский язык, развернутый библиографический список. Содержание учебника полностью соответствует Федеральному государственному образовательному стандарту высшего профессионального образования. Для студентов вузов, обучающихся по направлениям подготовки "Системный анализ и управление", "Прикладная математика и информатика", "Информатика и вычислительная техника", а также для всех желающих изучить дискретную математику.Рекомендовано Учебно-методическим объединением по университетскому политехническому образованию в качестве учебника для студентов высших учебных заведений, обучающихся по направлению подготовки "Системный анализ и управление".
  • С. В. Судоплатов, Е. В. Овчинникова. Дискретная математика. Учебник и практикум
    Дискретная математика. Учебник и практикум
    С. В. Судоплатов, Е. В. Овчинникова
    Серия "Университеты России" позволит высшим учебным заведениям нашей страны использовать в образовательном процессе учебники и учебные пособия по различным дисциплинам, подготовленные преподавателями лучших университетов России и впервые опубликованные в издательствах университетов. Все представленные в этой серии учебники прошли экспертную оценку учебно-методического отдела издательства и публикуются в оригинальной редакции.В книге излагаются основы теории множеств, алгебраических систем, компьютерной арифметики, теории графов, комбинаторики, алгебры логики, которые образуют курс дискретной математики.Для углубленного изучения материала в конце книги приводится список литературы. Для удобства поиска используемых терминов дан указатель терминов, а также указатель обозначений. Кроме того, в качестве приложения приведен типовой расчет по дискретной математике для самостоятельного выполнения студентами семестрового задания на основе материала, излагаемого в книге.Для студентов высших учебных заведений, обучающихся по инженерно-техническим и естественнонаучным направлениям.
  • А. А. Вороненко, В. С. Федорова. Дискретная математика. Задачи и упражнения с решениями. Учебно-методическое пособие
    Дискретная математика. Задачи и упражнения с решениями. Учебно-методическое пособие
    А. А. Вороненко, В. С. Федорова
    В пособии представлены решения задач, входящих в программу аудиторных занятий по курсам "Дискретная математика" и "Дополнительные главы дискретной математики", читаемых студентам факультета вычислительной математики и кибернетики МГУ имени М.В. Ломоносова. Все задачи взяты из учебника Г.П. Гаврилова, А.А. Сапоженко "Задачи и упражнения по дискретной математике" (М.: Физматлит, 2004).Пособие рассчитано на студентов первого и третьего курсов.
  • И. В. Романовский. Дискретный анализ. Учебное пособие
    Дискретный анализ. Учебное пособие
    И. В. Романовский
    Пособие написано по материалам вводного лекционного курса, который автор читает студентам-математикам Санкт-Петербургского государственного университета, специализирующимся по прикладной математике и информатике. Особое внимание уделяется связям между понятиями дискретного анализа, возникающими в разных разделах математики и современной информатики. Помимо отдельных исправлений и уточнений текст пополнился новыми библиографическими ссылками и рекомендациями на основании материалов, появившихся за семь лет с момента выхода четвертого издания.
  • В. В. Куликов. Дискретная математика
    Дискретная математика
    В. В. Куликов
    В пособии рассмотрены элементы математической логики, теории множеств и теории графов, приведены основные принципы комбинаторики. Описаны алгоритмы, позволяющие решать различные задачи с помощью компьютера. Изложены основные понятия теории конечных автоматов. Предназначено для студентов высших учебных заведений, обучающихся по направлениям подготовки дипломированных специалистов "Телекоммуникации", "Информационные системы", "Информатика и вычислительная техника".
  • М. О. Асанов, В. А. Баранский, В. В. Расин. Дискретная математика. Графы, матроиды, алгоритмы
    Дискретная математика. Графы, матроиды, алгоритмы
    М. О. Асанов, В. А. Баранский, В. В. Расин
    В учебном пособии изложен ряд основных разделов теории графов и матроидов. Рассмотрены алгоритмы дискретной оптимизации на сетях и графах, наиболее часто используемые программистами. Пособие предназначено для студентов и аспирантов, специализирующихся в области компьютерных наук и информационной безопасности, для практикующих программистов, для всех желающих изучить основы современной дискретной компьютерной математики.

© 2017 books.iqbuy.ru