Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • Н. Ш. Кремер, М. Н. Фридман. Линейная алгебра. Учебник и практикум
    Линейная алгебра. Учебник и практикум
    Н. Ш. Кремер, М. Н. Фридман
    Эта книга не только учебник, но и полноценное руководство к решению задач. Основные положения учебного материала дополняются задачами с решениями и для самостоятельной работы, раскрывается экономический смысл математических понятий, приводятся простейшие приложения линейной алгебры в экономике.Существенным отличием книги является наличие в ней наряду с традиционными контрольными заданиями (20 вариантов, более 130 задач) тестовых заданий (около 150). Это позволяет эффективно использовать учебник при проведении контрольных работ, тестировании студентов, приеме зачетов и экзаменов, а также при самоконтроле. Соответствует Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения.Для студентов вузов, обучающихся по направлениям экономики и управления, а также для бакалавров и магистров, аспирантов и экономистов, преподавателей и лиц, занимающихся самообразованием.
  • И. А. Мальцев. Линейная алгебра
    Линейная алгебра
    И. А. Мальцев
    Книга написана по материалам курса лекций по линейной алгебре и факультативных курсов, прочитанных автором на экономическом факультете Новосибирского госуниверситета, и ориентирована в первую очередь на студентов этого факультета. Ввиду доступного и очень подробного изложения материала она может быть рекомендована в качестве учебного пособия студентам других факультетов, а также для самостоятельного изучения предмета.
  • Татарников О.В. - отв. ред.. Линейная алгебра и линейное программирование. Практикум
    Линейная алгебра и линейное программирование. Практикум
    Татарников О.В. - отв. ред.
    Содержание практикума построено на материалах семинарских и практических занятий, проводимых авторами пособия в Российском экономическом университете им. В.Г.Плеханова. В учебном пособии представлены задания по основным разделам дисциплин "Линейная алгебра", "Математический анализ", "Теория вероятностей и математическая статистика" и "Линейное программирование", которые предназначены для овладения навыками использования табличного процессора Exсel для решения различных задач из курса высшей математики. Пособие содержит краткий теоретический материал, примеры выполнения заданий, а также варианты заданий для самостоятельной работы студентов. В практикуме рассмотрены лишь те математические задачи, которые имеют экономическое содержание.
  • Б. А. Горлач. Линейная алгебра
    Линейная алгебра
    Б. А. Горлач
    Учебное пособие соответствует Государственному образовательному стандарту высшего профессионального образования по программам математических дисциплин для студентов технических и экономических вузов, в частности, для специальностей и направлений с углубленной математической подготовкой. Методики решения типовых задач приведены в разработках семинарских занятий. Даны условия задач для самостоятельного решения и задания для выполнения расчетных работ. Приведены вопросы, в том числе в виде тестов, для самопроверки усвоения материала, а также типовые контрольные работы для проверки глубины усвоения теоретического материала и навыков решения задач. Учебное пособие может быть использовано для самостоятельного овладения материалом. Методические разработки семинарских занятий будут полезны преподавателям математики.
  • Потапов А.П.. Линейная алгебра и аналитическая геометрия. Учебник и практикум для СПО
    Линейная алгебра и аналитическая геометрия. Учебник и практикум для СПО
    Потапов А.П.
    Настоящий учебник предназначен для лиц, начинающих изучение курса высшей математики. Он включает в себя следующие разделы: линейная алгебра, векторная алгебра, аналитическая геометрия на плоскости и аналитическая геометрия в пространстве. Успешное освоение представленного материала необходимо для изучения последующих разделов высшей математики, основным из которых является математический анализ. Изложение теоретического материала сопровождается большим количеством разобранных примеров. В книге приведен обширный практикум. Задачи и упражнения охватывают все темы, затронутые в теоретической части. Учебник подходит студентам и преподавателям как при работе в аудитории, так и при подготовке к занятиям, контрольным работам и экзаменам по высшей математике.Представленный материал отражает многолетний опыт работы автора на технических факультетах Санкт-Петербургского политехнического университета Петра Великого.
  • И. Р. Шафаревич, А. О. Ремизов. Линейная алгебра и геометрия
    Линейная алгебра и геометрия
    И. Р. Шафаревич, А. О. Ремизов
    Книга представляет собой курс линейной алгебры и геометрии, основанный на лекциях, которые на протяжении многих лет читались одним из авторов на механико-математическом факультете Московского государственного университета. Изложение предмета начинается с теории линейных уравнений и матриц и далее ведется на языке векторных пространств. В книге также изложена теория аффинных и проективных пространств. Кроме того, включены некоторые темы, естественно примыкающие к линейной алгебре, но обычно в таких курсах не рассматриваемые: внешние алгебры, геометрия Лобачевского, топологические свойства проективных пространств, теория квадрик в многомерных аффинных и проективных пространствах, разложения конечных абелевых групп и конечнопорожденных периодических модулей (аналогичные теореме о жордановой нормальной форме линейного преобразования). Изложение сопровождается примерами, иллюстрирующими применение изучаемой теории. Рассматриваются ее связи с другими разделами математики, включая теорию дифференциальных уравнений, дифференциальную геометрию и механику. Книга рассчитана на студентов и преподавателей математических и физико-математических специальностей. Рекомендовано Научно-методическим советом по математике Министерства образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению 0101 - "Математика" и 0107 - "Физика".
  • В. Д. Кряквин. Линейная алгебра в задачах и упражнениях. Учебное пособие
    Линейная алгебра в задачах и упражнениях. Учебное пособие
    В. Д. Кряквин
    Учебное пособие содержит справочные сведения и примеры решения задач основных типов по разделам "Линейные и евклидовы пространства" и "Конечномерные линейные операторы в линейных и евклидовых пространствах" курсов "Линейная алгебра", "Алгебра", "Геометрия и алгебра" для вузов. Приведено значительное количество задач и упражнений для самостоятельного решения, которые могут быть использованы как для аудиторной работы, так и для индивидуальных заданий. Для студентов и преподавателей технических и экономических вузов, математических, механико-математических и естественно-научных факультетов и факультетов компьютерных наук и информационных технологий.
  • Г. С. Шевцов. Линейная алгебра. Теория и прикладные аспекты. Учебное пособие
    Линейная алгебра. Теория и прикладные аспекты. Учебное пособие
    Г. С. Шевцов
    Пособие охватывает весь обязательный теоретический и практический программный материал по курсу линейной алгебры для бакалавриата и магистратуры, а также некоторые нетрадиционные разделы: специальные разложения матриц, функции от матриц, псевдообратные матрицы, решение систем линейных уравнений методом наименьших квадратов и итерационными методами, устойчивость решений систем линейных уравнений. Цель пособия - создание базы для овладения другими разделами математики, в частности, для освоения вычислительных методов решения теоретических и прикладных задач. Для студентов и аспирантов, обучающихся по направлениям и специальностям "Математика", "Прикладная математика", "Физика", "Математические методы в экономике", "Инженерная технология", "Информатика" и др. Для преподавателей математики, научных работников и специалистов, применяющих методы линейной алгебры в своей практической деятельности. Может быть использовано в качестве справочника.
  • В. В. Воеводин. Линейная алгебра
    Линейная алгебра
    В. В. Воеводин
    Настоящее учебное пособие представляет собой объединенный курс линейной алгебры и аналитической геометрии. Написано оно на основе лекций, которые читались автором на факультете вычислительной математики и кибернетики Московского государственного университета им. М.В.Ломоносова. Книга отличается направленностью изложения в сторону прикладных задач и особым построением аппарата исследования с целью большего приближения его к вычислительному аппарату. Учебное пособие предназначается студентам университетов и технических вузов, обучающихся по специальности "Прикладная математика".
  • О. В. Татарников, А. С. Чуйко, В. Г. Шершнев. Линейная алгебра. Учебник и практикум
    Линейная алгебра. Учебник и практикум
    О. В. Татарников, А. С. Чуйко, В. Г. Шершнев
    Алгебра - это раздел математики, в котором изучаются действия над объектами произвольной природы. В учебник включены основные сведения из линейной алгебры, которые используются студентами при получении квалификации бакалавра экономики на этапах дальнейшего обучения. Содержание и объем материала учебника соответствуют Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения изучения дисциплины "Линейная алгебра". Излагаемые понятия, утверждения и следствия из них иллюстрируются примерами. Ответы на вопросы и решения задач, приведенные в конце каждого раздела, помогут лучше усвоить материал дисциплины. Для студентов любой формы обучения.
  • Кремер Н.Ш., Фридман М.Н.. Линейная алгебра 2-е изд., испр. и доп. Учебник и практикум для академического бакалавриата
    Линейная алгебра 2-е изд., испр. и доп. Учебник и практикум для академического бакалавриата
    Кремер Н.Ш., Фридман М.Н.
    В данный учебник включен ряд новых понятий и дополнительных вопросов, таких как норма матрицы, метод дополнения до базиса, изоморфизм линейных пространств, линейные подпространства, линейная оболочка, образ и ядро, ранг и дефект линейного оператора, поверхности второго порядка. Авторы стремились к более тщательной проработке базовых понятий и доказательств положений, изучение которых предусмотрено настоящим курсом.
  • А. А. Трухан,В. Г. Ковтуненко. Линейная алгебра и линейное программирование: Учебное пособие
    Линейная алгебра и линейное программирование: Учебное пособие
    А. А. Трухан,В. Г. Ковтуненко
    В пособии излагаются вопросы теории линейной алгебры для решения систем линейных алгебраических уравнений и линейного программирования в рамках курса высшей математики для технических вузов. Пособие содержит основные теоретические положения линейной алгебры и некоторые ее практические приложения, такие как матричное исчисление векторная алгебра и аналитическая геометрия в трехмерном и двумерном евклидовом пространстве, что позволяет решать практические инженерные задачи. Большое внимание уделено рассмотрению квадратичных форм и их геометрической иллюстрации. Кроме того, в данном пособии рассмотрено такое интересное приложение линейной алгебры, как линейное программирование, с помощью которого решаются задачи оптимизации.Даны также некоторые физические, инженерные и даже экономические приложения линейной алгебры, что важно для понимания студентами окружающего мира. Пособие построено в виде лекций и практических занятий, содержит решения типовых примеров, и в него включен большой набор типовых индивидуальных заданий для самостоятельной работы.Издание предназначено для студентов первого курса, обучающихся по направлениям подготовки, входящих в УГС: "Математика и механика", "Компьютерные и информационные науки", "Информатика и вычислительная техника", "Информационная безопасность", "Физико-технические науки и технологии", и других физико-математических и инженерно-технических направлений подготовки и специальностей
  • О. В. Зимина. Линейная алгебра и аналитическая геометрия
    Линейная алгебра и аналитическая геометрия
    О. В. Зимина
    Учебный комплекс ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ предназначен для студентов технических и экономических вузов. Он соответствует стандартной программе и содержит конспект 15 лекций, разработки 15 практических занятий с подробным решением типовых примеров и задачами и упражнениями для самостоятельного решения, контрольные вопросы по всем темам (с ответами), варианты контрольных работ, программы зачета и экзамена с образцами зачетного и экзаменационного билетов. В комплексе использован опыт кафедры высшей математики МЭИ (ТУ), накопленный при чтении лекций и проведении практических занятий, в том числе с применением ЭВМ. Комплекс отличается от существующих учебных пособий тем, что объединяет в себе функции учебника, сборника задач и репетитора-тренажера и может быть использован как при очной, так и при дистанционной форме обучения.
  • О. В. Татарников, А. С. Чуйко, В. Г. Шершнев. Линейная алгебра. Учебник и практикум
    Линейная алгебра. Учебник и практикум
    О. В. Татарников, А. С. Чуйко, В. Г. Шершнев
    В учебнике раскрыта теория систем линейных уравнений и неравенств, рассмотрены математические методы, используемые для решения проблем оптимизации экономических процессов. Изложены классические методы исследования и решения систем линейных уравнений. Обоснованы методы решения прикладных экономических задач, постановки которых сведены к моделям, анализ которых возможно провести с помощью хорошо отработанных алгоритмов, к которым в первую очередь относится симплекс алгоритм. Учебник содержит примеры и задачи, иллюстрирующие теоретический материал и дающие образцы решения задач. В каждой главе приведены вопросы и задания, а также задачи для самостоятельного решения, которые помогут лучше усвоить материал дисциплины.
  • Е. С. Кочетков, А. В. Осокин. Линейная алгебра
    Линейная алгебра
    Е. С. Кочетков, А. В. Осокин
    Пособие содержит теоретический материал по алгебраической части курса линейной алгебры и аналитической геометрии. Предназначается студентам технических и экономических вузов.
  • А. С. Бортаковский, А. В. Пантелеев. Линейная алгебра и аналитическая геометрия. Практикум. Учебное издание
    Линейная алгебра и аналитическая геометрия. Практикум. Учебное издание
    А. С. Бортаковский, А. В. Пантелеев
    Пособие предназначено для проведения практических занятий по курсу линейной алгебры и аналитической геометрии. Приведены основные понятия и методы решения задач по всем разделам курса: матрицы и определители, системы линейных алгебраических уравнений, квадратичные формы, линейные пространства, векторная алгебра, системы координат, преобразования плоскости и пространства, уравнения линий и поверхностей первого и второго порядков. Описаны некоторые приложения линейной алгебры в экономике и электротехнике, теории оптимизации и математическом анализе.В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения с ответами. Предыдущее издание выходило под названием "Практикум по линейной алгебре и аналитической геометрии" в 2007 г.Для студентов высших учебных заведений, получающих образование по направлению (специальности) "Прикладная математика", а также по направлениям (специальностям) естественных наук, техники и технологий, информатики и экономики на квалификацию специалиста, степени бакалавра и магистра.
  • В. А. Малугин, Я. А. Рощина. Линейная алгебра для экономистов. Учебник, практикум и сборник задач
    Линейная алгебра для экономистов. Учебник, практикум и сборник задач
    В. А. Малугин, Я. А. Рощина
    Книга содержит как материал линейной алгебры, так и некоторые ее экономические приложения. Цель - в доступной форме изложить основополагающие математические идеи, познакомить с математическим инструментарием, предназначенным для решения задач экономики. Книга снабжена большим количеством разобранных примеров, графическими иллюстрациями, в том числе трехмерными. Главы заканчиваются сборниками задач, достаточными для проведения семинарских занятий.Соответствует актуальным требованиям Федерального государственного образовательного стандарта высшего образования.Для бакалавров, обучающихся по профилям "Экономика предприятий и организаций", "Бухгалтерский учет, анализ и аудит", "Финансы и кредит"; также книга может быть использована в учебном процессе экономических и некоторых технических отделений вузов, при изучении линейной алгебры в дистанционной форме или самостоятельно.
  • В. А. Малугин, Я. А. Рощина. Линейная алгебра для экономистов. Учебник, практикум и сборник задач
    Линейная алгебра для экономистов. Учебник, практикум и сборник задач
    В. А. Малугин, Я. А. Рощина
    Книга содержит как материал линейной алгебры, так и некоторые ее экономические приложения. Цель - в доступной форме изложить основополагающие математические идеи, познакомить с математическим инструментарием, предназначенным для решения задач экономики. Книга снабжена большим количеством разобранных примеров, графическими иллюстрациями, в том числе трехмерными. Главы заканчиваются сборниками задач, достаточными для проведения семинарских занятий. Соответствует актуальным требованиям Федерального государственного образовательного стандарта высшего образования. Для бакалавров, обучающихся по профилям "Экономика предприятий и организаций", "Бухгалтерский учет, анализ и аудит", "Финансы и кредит"; также книга может быть использована в учебном процессе экономических и некоторых технических отделений вузов, при изучении линейной алгебры в дистанционной форме или самостоятельно.
  • В. Ф. Бутузов, Н. Ч. Крутицкая, А. А. Шишкин. Линейная алгебра в вопросах и задачах
    Линейная алгебра в вопросах и задачах
    В. Ф. Бутузов, Н. Ч. Крутицкая, А. А. Шишкин
    Пособие охватывает все разделы курса линейной алгебры и должно помочь активному и неформальному усвоению материала. По каждой теме кратко излагаются основные теоретические сведения и предлагаются контрольные вопросы; приводятся решения стандартных и нестандартных задач; даются задачи и упражнения для самостоятельной работы с ответами и указаниями. Для студентов высших учебных заведений.
  • Б.  М. Рудык. Линейная алгебра. Учебное пособие
    Линейная алгебра. Учебное пособие
    Б. М. Рудык
    В книге содержатся сведения по теории векторов, матриц и их определителей, систем линейных уравнений и неравенств. Рассматриваются также векторное пространство и его линейные преобразования, квадратичные формы. Включены элементы аналитической геометрии на плосткости и в пространстве.

© 2017 books.iqbuy.ru