Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • М. М. Глухов, В. П. Елизаров, А. А. Нечаев. Алгебра. Учебник
    Алгебра. Учебник
    М. М. Глухов, В. П. Елизаров, А. А. Нечаев
    В первой половине учебника излагается материал, содержащий основные понятия и теоремы современной алгебры, который может использоваться студентами, обучающимися по направлениям подготовки и специальностям математического и технического профиля. Последующие главы содержат такие важные для специалистов по защите информации разделы, как теория конечных полей, многочлены над конечными полями, группы подстановок, определяющие соотношения групп, линейные рекуррентные последовательности и др. Содержание учебника полностью соответствует примерным программам учебных дисциплин алгебраического цикла при реализации федеральных государственных образовательных стандартов по направлениям подготовки и специальностям, входящим в укрупненную группу "Информационная безопасность".
  • Л. А. Игнаточкина, А. В. Никифорова. Алгебра для геометрии. Учебное пособие
    Алгебра для геометрии. Учебное пособие
    Л. А. Игнаточкина, А. В. Никифорова
    Учебное пособие написано для студентов, обучающихся по направлению подготовки бакалавров "Математика". В начале изучения аналитической геометрии некоторые понятия алгебры (определитель матрицы, группа, отображение) еще до конца не освоены студентами, и их применение для целей аналитической геометрии затруднено.Данное пособие предназначено для устранения указанных затруднений.
  • Г. И. Шуман, О. А. Волгина, Н. Ю. Голодная. Алгебра и геометрия. Учебное пособие
    Алгебра и геометрия. Учебное пособие
    Г. И. Шуман, О. А. Волгина, Н. Ю. Голодная
    В данном учебном пособии по каждой теме приводится теоретическая часть курса алгебры и геометрии, в которой рассматриваются основные понятия и формулы, даны решения типовых задач. Содержится большое количество задач для самостоятельной работы студентов, контрольные работы и индивидуальные домашние задания. Для студентов бакалавриата, обучающихся по направлениям подготовки, изучающих данный раздел.
  • Аналитическая геометрия и линейная алгебра. Сборник задач
    Аналитическая геометрия и линейная алгебра. Сборник задач
    Сборник содержит задачи по аналитической геометрии и линейной алгебре. Теоретические задачи, как правило, сопровождаются упражнениями различной трудности, способствующими самостоятельной проверке обучаемыми степени понимания ими новых определений и алгоритмов. В конце книги приведены ответы и указания. Настоящий сборник предназначен для студентов, получающих образование по математическим направлениям и специальностям. Он может быть использован преподавателями вузов. Предыдущее издание книги вышло в 2005 г. в издательстве "Логос".
  • В. Е. Епихин, С. С Граськин. Аналитическая геометрия и линейная алгебра.Теория и решение задач. Учебное пособие
    Аналитическая геометрия и линейная алгебра.Теория и решение задач. Учебное пособие
    В. Е. Епихин, С. С Граськин
    Рассмотрены методы решения геометрических задач с помощью векторов. Приведены понятия метрического аффинного пространства, аффинного точечно-векторного пространства, векторные и аналитические методы решения метрических и позиционных задач стереометрии, решения систем линейных уравнений, а также геометрических преобразований пространства. Содержит свыше 200 задачпо стереометрии и алгебре с подробными решениями, а также 220 упражнений, снабженных ответами, указаниями или решениями. Каждый раздел заканчивается коллоквиумом, в который входят контрольные вопросы по изученным темам. Соответствует ФГОС ВО последнего поколения.Для студентов бакалавриата педагогических, математических и технических факультетов. Может быть полезно учащимся общеобразовательных и специализированных школ, лицеев, гимназий и колледжей. Рекомендуется также учителям математики, преподавателям и слушателям подготовительных курсов.
  • А. И. Кострикин. Введение в алгебру. В 3 частях. Часть 2. Линейная алгебра
    Введение в алгебру. В 3 частях. Часть 2. Линейная алгебра
    А. И. Кострикин
    Наиболее важные разделы линейной алгебры изложены в максимально доступной форме. На первый план выдвигаются простые геометрические понятия, на базе которых идет всестороннее развитие алгебраического аппарата, введенного в части I. Указаны приложения к разным вопросам анализа, теории линейных групп, алгебр Ли, математической экономики, дифференциальных уравнений, геометрии Лобачевского. Каждый параграф заканчивается упражнениями. Ответы и наброски решений собраны в отдельном разделе. Сформулированы некоторые нерешенные задачи. Предыдущее издание книги вышло в 2004 году в издательстве Физматлит.
  • М. Л. Краснов, А. И. Киселев, Г. И. Макаренко, Е. В. Шикин, В. И. Заляпин. Вся высшая математика. Том 1. Аналитическая геометрия. Векторная алгебра. Линейная алгебра. Дифференциальное исчесление
    Вся высшая математика. Том 1. Аналитическая геометрия. Векторная алгебра. Линейная алгебра. Дифференциальное исчесление
    М. Л. Краснов, А. И. Киселев, Г. И. Макаренко, Е. В. Шикин, В. И. Заляпин
    Предлагаемый учебник впервые вышел в свет в виде двухтомника сначала на английском и испанском языках в 1990 году, а затем на французском. До сих пор он пользуется большим спросом за рубежом. В 1999 году книга стала лауреатом конкурса по созданию новых учебников Министерства образования России. Данный учебник охватывает практически все разделы математики, но при этом представляет собой не набор разрозненных глав, а единое целое. Первый том включает в себя материал по аналитической геометрии, линейной алгебре и некоторым разделам математического анализа (введение в анализ, дифференциальное исчисление функций одной переменной). Учебник адресован студентам высших учебных заведений - в первую очередь будущим инженерам и экономистам.
  • Н. С. Никитина. Высшая алгебра. Теория и решения типовых задач
    Высшая алгебра. Теория и решения типовых задач
    Н. С. Никитина

  • И. П. Волобуев, Ю. А. Кубышин. Дифференциальная геометрия и алгебры Ли и их приложения в теории поля
    Дифференциальная геометрия и алгебры Ли и их приложения в теории поля
    И. П. Волобуев, Ю. А. Кубышин
    В книге излагаются основы дифференциальной геометрии и теории алгебр Ли, а также описание теории калибровочных полей на геометрическом языке. В качестве приложений этого аппарата обсуждаются размерная редукция калибровочных теорий и задача спонтанной компактификации.Книга рассчитана на студентов старших курсов, аспирантов и научных работников, математиков и физиков-теоретиков.
  • А. Г. Курош. Курс высшей алгебры
    Курс высшей алгебры
    А. Г. Курош
    Книга известного советского математика А. Г.Куроша является классическим учебником по высшей алгебре. Простота и строгость изложения давно сделали "Курс" популярным среди студентов. Книга охватывает большинство тем курса высшей алгебры, читаемого на математических факультетах университетов: системы линейных уравнений, определители и матрицы, комплексные числа, многочлены, линейные и евклидовы пространства, квадратичные формы, основы теории групп. Издание предназначено для студентов математических и технических специальностей вузов и всех интересующихся алгеброй.
  • Э. Б. Винберг. Курс алгебры
    Курс алгебры
    Э. Б. Винберг
    Книга представляет собой расширенный вариант курса алгебры, читаемого в течение трех семестров на математических факультетах. В нее включены такие дополнительные разделы, как элементы коммутативной алгебры (в связи с аффинной алгебраической геометрией), теории Галуа, теории конечномерных ассоциативных алгебр и теории групп Ли. Это позволяет использовать книгу не только как учебник по общему курсу алгебры, но и как пособие для тех, кто желает углубить свои познания в алгебре. Изложение иллюстрируется большим количеством примеров и сопровождается задачами, часто содержащими дополнительный материал.Книга предназначена для математиков и физиков - студентов, аспирантов, преподавателей и научных работников.
  • П. С. Александров. Курс аналитической геометрии и линейной алгебры
    Курс аналитической геометрии и линейной алгебры
    П. С. Александров
    Книга представляет собой учебник по объединенному курсу аналитической геометрии и линейной алгебры для университетов. Наряду с традиционной тематикой книга содержит основные сведения из многомерной аналитической геометрии, включая аффинную классификацию гиперповерхностей второго порядка. Кроме того, в книге излагаются простейшие понятия геометрии n-мерного проективного пространства. Учебник рассчитан на студентов-математиков и студентов-физиков университетов и пединститутов, а также на все категории читателей, серьезно интересующихся математикой.
  • Г. И. Курбатов, В. Б. Филиппов. Курс лекций по алгебре. Учебное пособие
    Курс лекций по алгебре. Учебное пособие
    Г. И. Курбатов, В. Б. Филиппов
    Книга представляет собой курс лекций по алгебре, читаемый в течение первых двух семестров обучения на факультете прикладной математики - процессов управления Санкт-Петербургского государственного университета. Материал изложен в максимально доступной форме и может быть использован в качестве учебника по общему курсу алгебры. Представленные в книге 32 лекции охватывают весь обязательный материал курса алгебры по образовательным программам подготовки бакалавров университетов и технических вузов по направлениям "Прикладные математика и физика", "Прикладные математика и информатика" и "Фундаментальная информатика и информационные технологии".
  • В. Босс. Лекции по математике. Том 3. Линейная алгебра
    Лекции по математике. Том 3. Линейная алгебра
    В. Босс
    Настоящий том лекций посвящен линейной алгебре. Аналитическая геометрия рассматривается как вспомогательный предмет, способствующий освоению понятий векторного пространства. Охват линейной алгебры достаточно широкий, но изложение построено так, что можно ограничиться любым желаемым срезом содержания. Книга отличается краткостью и прозрачностью изложения. Объяснения даются "человеческим языком" - лаконично и доходчиво. Значительное внимание уделяется мотивации результатов и прикладным аспектам. Даже в устоявшихся темах ощущается свежий взгляд, в связи с чем преподаватели найдут здесь для себя немало интересного. Книга легко читается.Для студентов, преподавателей, инженеров и научных работников.
  • В. Босс. Лекции по математике. Том 8. Теория групп
    Лекции по математике. Том 8. Теория групп
    В. Босс
    В настоящей книге изложение преследует цель перевести теорию групп из разряда узкоспециализированных дисциплин в диапазон общеобразовательных математических предметов за счет иной расстановки акцентов, повышения доступности идеологии и освещения прикладных аспектов. Проблематика охватывается довольно широко, от обычных основ до теории Галуа и групп Ли. Делается особый упор на приложения к динамическим системам. Рассматриваются также сопутствующие вопросы из общей алгебры. Изложение отличается краткостью и прозрачностью.Для студентов, преподавателей, инженеров и научных работников.
  • М. М. Постников. Лекции по геометрии. Линейная алгебра. Семестр 2
    Лекции по геометрии. Линейная алгебра. Семестр 2
    М. М. Постников
    Настоящая книга написана на основе лекций, которые автор в течение ряда лет читал на механико-математическом факультете МГУ имени М.В.Ломоносова. Она входит в фундаментальный курс автора "Лекции по геометрии", остальные части которого также выходят в нашем издательстве.В книге на высоком научном уровне изложены основные разделы линейной алгебры. Особое внимание уделено полилинейной алгебре (кососимметрическим функционалам), образующей базу современной теории интегрирования на гладких многообразиях, рассмотренной автором в следующей части курса.Книга предназначена для студентов математических специальностей вузов. Она может служить учебным пособием по обязательному курсу геометрии и топологии в университетах и педагогических институтах.
  • М. М. Постников. Лекции по геометрии. Группы и алгебры Ли. Семестр 5
    Лекции по геометрии. Группы и алгебры Ли. Семестр 5
    М. М. Постников
    Настоящая книга написана на основе лекций, которые автор в течение ряда лет читал на механико-математическом факультете МГУ имени М.В.Ломоносова. Она входит в фундаментальный курс автора "Лекции по геометрии", остальные части которого также выходят в нашем издательстве.В основе теории групп Ли лежит теорема Картана об эквивалентности категории односвязных групп Ли категории алгебр Ли. Эта книга посвящена доказательству теоремы Картана и основных связанных с ней результатов. В начале вводятся и разъясняются на примерах основные понятия: группа Ли, алгебра Ли, алгебра Ли данной группы Ли. Далее рассматривается "локальная теория" групп Ли, а затем осуществляется "глобализация" теории.Книга предназначена для студентов математических специальностей вузов. Она может служить учебным пособием по обязательному курсу геометрии и топологии в университетах и педагогических институтах.
  • И. Р. Шафаревич, А. О. Ремизов. Линейная алгебра и геометрия
    Линейная алгебра и геометрия
    И. Р. Шафаревич, А. О. Ремизов
    Книга представляет собой курс линейной алгебры и геометрии, основанный на лекциях, которые на протяжении многих лет читались одним из авторов на механико-математическом факультете Московского государственного университета. Изложение предмета начинается с теории линейных уравнений и матриц и далее ведется на языке векторных пространств. В книге также изложена теория аффинных и проективных пространств. Кроме того, включены некоторые темы, естественно примыкающие к линейной алгебре, но обычно в таких курсах не рассматриваемые: внешние алгебры, геометрия Лобачевского, топологические свойства проективных пространств, теория квадрик в многомерных аффинных и проективных пространствах, разложения конечных абелевых групп и конечнопорожденных периодических модулей (аналогичные теореме о жордановой нормальной форме линейного преобразования). Изложение сопровождается примерами, иллюстрирующими применение изучаемой теории. Рассматриваются ее связи с другими разделами математики, включая теорию дифференциальных уравнений, дифференциальную геометрию и механику. Книга рассчитана на студентов и преподавателей математических и физико-математических специальностей. Рекомендовано Научно-методическим советом по математике Министерства образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению 0101 - "Математика" и 0107 - "Физика".
  • Б.  М. Рудык. Линейная алгебра. Учебное пособие
    Линейная алгебра. Учебное пособие
    Б. М. Рудык
    В книге содержатся сведения по теории векторов, матриц и их определителей, систем линейных уравнений и неравенств. Рассматриваются также векторное пространство и его линейные преобразования, квадратичные формы. Включены элементы аналитической геометрии на плосткости и в пространстве.

© 2017 books.iqbuy.ru