Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • Р. П. Федоренко. Введение в вычислительную физику
    Введение в вычислительную физику
    Р. П. Федоренко
    Книга посвящена описанию методов приближенного решения задач математической физики, возникающих в различных областях. Изложение основных понятий и средств численного анализа доводится до описания специальных алгоритмов решения важных прикладных задач, разработка которых продолжается в настоящее время. Приближенные решения сложных задач получаются как общими средствами вычислительной математики, так и специфическими для данного узкого класса задач приемами, которые позволяют обходить существенные трудности в современной вычислительной работе и делают расчеты посильными для ЭВМ. Для студентов и аспирантов факультетов прикладной математики и физико-технических специальностей вузов с достаточно высоким уровнем преподавания математики, а также для научных работников, специализирующихся в области применения численных методов в научных исследованиях.
  • Л. К. Мартинсон, Ю. И. Малов. Дифференциальные уравнения математической физики. Выпуск 12
    Дифференциальные уравнения математической физики. Выпуск 12
    Л. К. Мартинсон, Ю. И. Малов
    Рассмотрены различные постановки задач математической физики для дифференциальных уравнений и частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др. Содержание учебника соответствует курсу лекций, которые авторы читают в МГТУ им. Н.Э.Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
  • Г. Т. Тарабрин. Методы математической физики
    Методы математической физики
    Г. Т. Тарабрин
    Содержание пособия отвечает требованиям современных программ по математике для технических вузов, предусматривающих изучение методов математической физики. Пособие состоит из четырех частей. В первой части дается краткое изложение теории функций комплексной переменной, включающее в себя дифференциальное и интегральное исчисления, конформные отображения, ряды, вычеты и их приложение. Во второй части излагаются теоретические основы интегральных преобразований Лапласа, Фурье, Ханкеля и приемы решения с их помощью дифференциальных и интегральных уравнений. В третьей части на классических примерах изучаются методы решения задач основных дифференциальных уравнений математической физики. В четвертой части даются основы метода вариаций в задачах с неподвижными границами. Пособие рассчитано на студентов старших курсов технических специальностей, завершивших изучение линейной алгебры, аналитической геометрии, дифференциального и интегрального исчислений.
  • Н. А. Кудряшов. Методы нелинейной математической физики
    Методы нелинейной математической физики
    Н. А. Кудряшов
    Основное внимание в книге уделено методам построения аналитических решений нелинейных дифференциальных уравнений. Для уравнений, интегрируемых методом обратной задачи рассеяния: уравнения Кортевега-де Ври-за, нелинейного уравнения Шредингера и уравнения Синус-Гордона - представлены пары Лакса и преобразования Бэклунда, а также изложены схемы решения задач Коши. Для ряда других нелинейных дифференциальных уравнений предложены методы нахождения точных решений. Для демонстрации методов, представленных в книге, выбраны наиболее популярные нелинейные дифференциальные уравнения: уравнение Кортевега-де-Вриза, нелинейное уравнение Шредингера, уравнение Синус-Гордона, уравнение Курамото-Сивашинского, уравнение Гинзбурга-Ландау, уравнение Колмогорова-Петровского-Пискунова, уравнение Бюргерса-Хаксли, уравнение нелинейной теплопроводности и хорошо известные системы дифференциальных уравнений: система Лоренца и система Хенона-Хейлеса. Книгу можно рассматривать как справочник по наиболее известным нелинейным дифференциальным уравнениям и методам их решения. В ней дается вывод известных нелинейных дифференциальных уравнений и предлагается информация о физических процессах, при описании которых они встречаются. Предназначена для студентов, аспирантов и научных работников, интересующихся нелинейными математическими моделями, теорией солитонов и методами построения решений нелинейных дифференциальных уравнений.
  • Е. А. Власова, В. С. Зарубин, Г. Н. Кувыркин. Приближенные методы математической физики. Выпуск 13
    Приближенные методы математической физики. Выпуск 13
    Е. А. Власова, В. С. Зарубин, Г. Н. Кувыркин
    Книга является тринадцатым выпуском серии учебников `Математика в техническом университете`. Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э.Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
  • Б. М. Будак, А. А. Самарский, А. Н. Тихонов. Сборник задач по математической физике
    Сборник задач по математической физике
    Б. М. Будак, А. А. Самарский, А. Н. Тихонов
    Сборник содержит задачи на вывод уравнений и граничных условий. Большое внимание уделяется различным методам решения краевых задач математической физики. Наряду с ответами к задачам приводятся указания, а для многих задач - решения, иллюстрирующие применение основных методов. Для студентов университетов.
  • А. Ф. Никифоров, В. Б. Уваров. Специальные функции математической физики
    Специальные функции математической физики
    А. Ф. Никифоров, В. Б. Уваров
    Классические ортогональные полиномы, сферические и гипергеометрические функции, а также функции Бесселя рассматриваются с единой точки зрения как частные решения возникающего во многих задачах математической физики и квантовой механики дифференциального уравнения определенного типа. Для решений этого уравнения с помощью обобщения формулы Родрига найдено интегральное представление, из которого получены все основные свойства специальных функций. Построена также теория классических ортогональных полиномов дискретной переменной как на равномерных, так и неравномерных сетках, установлена их связь с коэффициентами Клебша-Гордана и коэффициентами Рака. Рассматриваются приложения к задачам математической физики, квантовой механики и вычислительной математики. Книга предназначена для студентов и аспирантов, научных работников и инженеров-исследователей, а также для всех, имеющих дело с математическими расчетами. Она может быть использована при изучении теоретической и математической физики.
  • А. Д. Полянин, В. Ф. Зайцев. Справочник. Нелинейные уравнения математической физики
    Справочник. Нелинейные уравнения математической физики
    А. Д. Полянин, В. Ф. Зайцев
    Книга содержит точные решения около 1200 нелинейных уравнений математической физики и механики. Рассматриваются уравнения параболического, гиперболического, эллиптического и других типов. Описано много новых решений нелинейных уравнений. Особое внимание уделено уравнениям общего вида, которые зависят от произвольных функций. Помимо уравнений второго порядка рассматриваются также уравнения третьего, четвертого и более высоких порядков. В целом справочник содержит больше нелинейных уравнений математической физики и точных решений, чем любые другие книги. Приведены решения уравнений, встречающихся в различных областях теоретической физики, механики и химической технологии (в теории тепло- и массопереноса, теории волн, гидродинамике, нелинейной акустике, теории горения, нелинейной оптике, ядерной физике). В приложении описаны методы обобщенного и функционального разделения переменных. Рассмотрены конкретные примеры применения этих методов для построения точных решений нелинейных уравнений с частными производными. Справочник предназначен для широкого круга научных работников, преподавателей вузов, инженеров и студентов, специализирующихся в различных областях математики, физики, механики, теории управления и инженерных наук.
  • Е. В. Захаров, И. В. Дмитриева, С. И. Орлик. Уравнения математической физики
    Уравнения математической физики
    Е. В. Захаров, И. В. Дмитриева, С. И. Орлик
    В учебнике представлен материал для первоначального изучения уравнений математической физики: даны математические постановки задач для уравнений в частных производных (теплопроводности, Лапласа, волнового); приведены доказательства теорем единственности, существования и устойчивости их решений; описаны методы построения решений. Для студентов высших учебных заведений.

© 2017 books.iqbuy.ru