Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • Э. М. Карташов, В. А. Кудинов. Аналитические методы теории теплопроводности и ее приложений
    Аналитические методы теории теплопроводности и ее приложений
    Э. М. Карташов, В. А. Кудинов
    Книга посвящена аналитическому изучению процессов теплопроводности и термоупругости - одному из важнейших разделов современных инженерных исследований в машиностроительной промышленности, в химических и строительных процессах. Материал книги является уникальным и не имеет аналогов в отечественной и мировой литературе. Он способствует развитию общей инженерной культуре различных специалистов технического профиля. Книгу можно рассматривать как современное изложение теории термоупругости и модельного описания тепловых процессов и их применения для инженеров, специализирующихся в машиностроении, энергетики, космической техники, атомной и ядерной промышленности и др. Главной достоинством и отличительной особенностью материала является научная новизна. Это прежде всего связано с наличием принципиально новых разделов, посвященных теории теплообмена с приложениями, получившей развитие лишь в последние два десятилетия. Книга также имеет и методическое преимущество: она построена таким образом, что отдельные главы могу изучаться независимо друг от друга.Книга адресована инженерам, научным сотрудникам, преподавателям, а также специалистам в области приложений теории прикладной термоупругости в различных направлениях науки и техники. Может представлять интерес для широкого круга математиков-прикладников, механиков, физиков, теплофизиков, работающих в области механики сплошной среды.
  • Ю. К. Алексеев, А. П. Сухоруков. Введение в теорию катастроф. Учебное пособие
    Введение в теорию катастроф. Учебное пособие
    Ю. К. Алексеев, А. П. Сухоруков
    Настоящая книга написана на основе лекций, читаемых авторами в течение ряда лет для студентов старших курсов физического факультета МГУ. Курс лекций ставит своей целью ознакомить студентов с относительно новым разделом математической физики - теорией особенностей отображений множеств, называемой также иногда теорией катастроф, и ее приложениями в физике. Теория особенностей лежит на стыке таких областей математики, как дифференциальные уравнения, математический анализ, топология, геометрия, абстрактная алгебра, и представляет собой вполне самостоятельную дисциплину, вооружающую исследователя мощным, хорошо развитым и строго обоснованным аппаратом исследования различных физических явлений в наиболее интересных, "критических" ситуациях. Для студентов, аспирантов, инженеров и научных сотрудников физических специальностей.
  • В. Ю. Новокшенов. Введение в теорию солитонов
    Введение в теорию солитонов
    В. Ю. Новокшенов
    Излагаются основные идеи современной теории нелинейных уравнений математической физики, а также методы их точного интегрирования, основанные на спектральных свойствах некоторых линейных дифференциальных операторов. Рассмотрены многочисленные приложения к задачам гидродинамики, нелинейной оптики и квантовой механики. Даются краткие исторические ссылки и обзор современных работ по теме. Работа построена в виде лекций для студентов старших курсов по специальности 010200 `Прикладная математика`.
  • А. А. Гухман. Введение в теорию подобия. Учебное пособие
    Введение в теорию подобия. Учебное пособие
    А. А. Гухман
    Настоящее пособие представляет собой введение в теорию подобия, понимаемую как учение о характерных для каждого данного процесса обобщенных переменных; цель его - познакомить читателя с основами теории и техникой ее применения. В книге приводится метод точного и приближенного моделирования, рассматриваются основы учения о размерности как формы обобщенного анализа. Особое внимание уделено анализу процессов переноса в движущейся жидкости. При написании книги автор стремился к тому, чтобы четко обозначить органическую связь между исходными физическими представлениями теории подобия и ее математическим аппаратом, представить теорию подобия как систему идей, имеющих ясный физический смысл. Книга ориентирована на студентов физико-математических специальностей, преподавателей, аспирантов и научных работников.
  • Г. А. Шаров. Векторное, матричное и тензорное исчисления. Справочник для технических университетов. Учебное пособие
    Векторное, матричное и тензорное исчисления. Справочник для технических университетов. Учебное пособие
    Г. А. Шаров
    Учебно-справочное руководство посвящено разделам математики, постоянно используемым в физике и прикладных дисциплинах - механике, теории поля, гидроаэродинамике, кристаллографии, радиоэлектронике и т.д. Сложившаяся структура образования в российских университетах не обеспечивает хороших знаний различных систем координат, векторного анализа, не даёт достаточных навыков расчётов с применением матриц и тензоров. Издание поможет в учебном процессе студентам и преподавателям физических и технических специальностей, а также будет полезно научным работникам и инженерам-разработчикам.
  • Е. Е. Перепёлкин, Б. И. Садовников, Н. Г. Иноземцева. Вычисления на графических процессорах (GPU) в задачах математической и теоретической физики
    Вычисления на графических процессорах (GPU) в задачах математической и теоретической физики
    Е. Е. Перепёлкин, Б. И. Садовников, Н. Г. Иноземцева
    Данное учебное пособие является обобщением курса лекций, который читался на физическом факультете МГУ имени М.В.Ломоносова по методам параллельного программирования на GPU в задачах теоретической и математической физики. В курсе изложены базовые знания, необходимые, чтобы быстро и эффективно начать писать программы на графическом процессоре (GPU) без специальной подготовки в области программирования.Курс лекций рассчитан на широкий круг студентов, аспирантов, преподавателей вузов и специалистов в различных областях математического моделирования и теоретической физики, для которых программирование не является основной специальностью, а используется ими как дополнительный инструмент в численном моделировании исследуемых задач.
  • Е. С. Соболева, Г. М. Фатеева. Задачи и упражнения по уравнениям математической физики
    Задачи и упражнения по уравнениям математической физики
    Е. С. Соболева, Г. М. Фатеева
    Настоящее издание содержит около 200 задач, снабженных ответами. Для задач, отмеченных звездочкой, приведены решения. Рекомендовано УМО по классическому университетскому образованию в качестве учебного пособия по уравнениям математической физики для студентов высших учебных заведений, обучающихся по естественно-научным специальностям.
  • О. Г. Смолянов, Е. Т. Шавгулидзе. Континуальные интегралы
    Континуальные интегралы
    О. Г. Смолянов, Е. Т. Шавгулидзе
    В книге рассматриваются математические задачи, связанные с одним из центральных объектов математической физики и бесконечномерного анализа — континуальным, или функциональным, интегралом. Его наиболее важный для приложений в квантовой теории вариант носит название интеграла Фейнмана; именно ему и уделяется основное внимание в книге. Континуальные интегралы — это интегралы по бесконечномерным пространствах функций; их значение определяется тем, что они позволяют представить в явном виде решения различных задач, связанных с дифференциальными операторами с частными производными и, более общим образом, с псевдодифференциальными операторами. С помощью континуальных интегралов выражаются ядро разрешающего оператора задачи Коши для уравнений типа Шредингера и теплопроводности как в конечномерном, так и в бесконечномерном случае (соответствующие формулы известны как формулы Фейнмана—Каца), регуляризованные следы дифференциальных операторов и регуляризованные определители экспонент от них, математические ожидания неограниченных случайных операторов, ряд объектов, возникающих в теории представлений групп. Эффективность подхода, использующего континуальные интегралы, объясняется сходством их формальных свойств со свойствами обычных интегралов по счетно аддитивной мере, что позволяет, распространяя на континуальные интегралы методы классического анализа, получить гибкий формальный аппарат. Книга написана на основе курсов, неоднократно читавшихся авторами на механико-математическом факультете МГУ имени М.В.Ломоносова. Для студентов и аспирантов математических и физических факультетов университетов, а также для научных работников.
  • Д. П. Голоскоков. Курс математической физики с использованием пакета Maple. Учебное пособие
    Курс математической физики с использованием пакета Maple. Учебное пособие
    Д. П. Голоскоков
    В учебном пособии рассмотрены классические методы интегрирования дифференциальных уравнений в частных производных второго порядка, метод интегральных преобразований в конечных и бесконечных пределах, элементы теории интегральных уравнений, а также приближенные методы решения задач математической физики (вариационные методы и метод сеток). Основное внимание деляется конструктивным методам, с помощью которых можно построить явное решение задачи. Изложение иллюстрируется большим количеством подробно разобранных примеров и задач. Особенностью учебного курса является широкое использование системы аналитических вычислений Maple при решении учебных задач математической физики. В конце глав приводится значительное количество задач для самостоятельного решения и примеры решения задач в Maple с текстами программ, что делает это учебное пособие пригодным для практических и лабораторных занятий по математической физике. Учебное пособие может быть рекомендовано студентам, обучающимся по направлениям "Прикладная математика и информатика" и другим физико-математическим и инженерно-техническим направлениям технических университетов.
  • В. Босс. Лекции по математике. Уравнения математической физики
    Лекции по математике. Уравнения математической физики
    В. Босс
    Излагается обычная для уравнений математической физики тематика: распространение волн, теплопроводность, вопросы разрешимости, корректности. Акцент делается на линейных уравнениях с частными производными, но рассматриваются и нелинейные процессы. Определенное внимание уделяется нестандартным для рассматриваемой области направлениям. В первую очередь это теоретико-групповые методы изучения уравнений с частными производными, автомодельные решения и другие плоды исследования свойств симметрии. Несколько особняком стоит разъяснение теории дифференциальных форм, от которых не зависит остальное содержание. Но сама эта теория тесно примыкает к уравнениям математической физики и нуждается в простом и ясном описании. Изложение отличается краткостью и прозрачностью. Для студентов, преподавателей, инженеров и научных работников.
  • М. М. Карчевский. Лекции по уравнениям математической физики. Учебное пособие
    Лекции по уравнениям математической физики. Учебное пособие
    М. М. Карчевский
    Излагаются основные методы исследования и решения граничных задач для линейных уравнений с частными производными второго порядка. Книга предназначена для студентов, обучающихся по направлениям подготовки, входящим в УГС "Математика и механика", "Физика и астрономия", и другим физико-математическим направлениям подготовки.
  • А. Г. Свешников, А. Н. Боголюбов, В. В. Кравцов. Лекции по математической физике
    Лекции по математической физике
    А. Г. Свешников, А. Н. Боголюбов, В. В. Кравцов
    В книге рассматриваются основные методы исследования краевых и начально-краевых задач для дифференциальных уравнений математической физики. Отличительной особенностью учебного пособия является непосредственная связь между физической сущностью изучаемых явлений и математическими методами их исследования. В пособии содержится математический аппарат, знание которого необходимо студентам-физикам для дальнейшей работы в области экспериментальной и теоретической физики. Одна из глав посвящена изложению теории специальных функций - важнейшему аналитическому аппарату исследования краевых задач математической физики. Во второе издание внесены исправления, учитывающие замечания читателей, и дополнительные примеры постановки математических моделей ряда актуальных физических задач. Для студентов физических специальностей университетов.
  • М. А. Ольшанский. Лекции и упражнения по многосеточным методам
    Лекции и упражнения по многосеточным методам
    М. А. Ольшанский
    Лекции вводят в многосеточные методы и их приложения к численному решению задач математической физики. Изучается геометрический многосеточный метод, включающий классические V- и W-циклы, и аддитивный многосеточный метод. Сначала теория применяется к простому примеру задачи Пуассона. Далее в лекциях рассматриваются более сложные дифференциальные задачи. Основным методом дискретизации служит метод конечных элементов. Теория иллюстрируется численными примерами и упражнениями. Книга дополняет стандартные учебники по численным методам и рассчитана на студентов старших курсов и аспирантов. Может служить учебным пособием к практикуму по численным методам и основой для дополнительного курса. Материалы лекций будут полезны для исследователей в области численного анализа.
  • Е. А. Краснопевцев. Математические методы физики. Ортонормированные базисы функций. Учебное пособие
    Математические методы физики. Ортонормированные базисы функций. Учебное пособие
    Е. А. Краснопевцев
    Рассматривается построение, исследование и использование ортонормированных базисов, образованных элементарными и специальными функциями. Излагается метод преобразования Фурье и обобщенные функции: дельта-функция, функция Хевисайда, знаковая и прямоугольная функции, гребенчатая функция. Ортонормированные базисы в виде специальных функций математической физики являются решениями однородных дифференциальных уравнений обобщенного гипергеометрического типа. Для их решения используется метод факторизации. Неоднородные уравнения решаются методом функций Грина. Приводятся примеры решений задач, предлагаются задачи для самостоятельного решения.Издание предназначено для студентов, приступающих к изучению дисциплин, относящихся к теоретической физике и обучающихся по направлениям подготовки, входящих в УГС: "Математика и механика", "Физика и астрономия", "Физико-технические науки и технологии", и другим физико-математическим и инжерно-техническим направлениям подготовки и специальностям, а также для специалистов, которые могут использовать издание в качестве справочного пособия.
  • Г. Т. Тарабрин. Методы математической физики
    Методы математической физики
    Г. Т. Тарабрин
    Содержание пособия отвечает требованиям современных программ по математике для технических вузов, предусматривающих изучение методов математической физики. Пособие состоит из четырех частей. В первой части дается краткое изложение теории функций комплексной переменной, включающее в себя дифференциальное и интегральное исчисления, конформные отображения, ряды, вычеты и их приложение. Во второй части излагаются теоретические основы интегральных преобразований Лапласа, Фурье, Ханкеля и приемы решения с их помощью дифференциальных и интегральных уравнений. В третьей части на классических примерах изучаются методы решения задач основных дифференциальных уравнений математической физики. В четвертой части даются основы метода вариаций в задачах с неподвижными границами. Пособие рассчитано на студентов старших курсов технических специальностей, завершивших изучение линейной алгебры, аналитической геометрии, дифференциального и интегрального исчислений.
  • Н. А. Кудряшов. Методы нелинейной математической физики
    Методы нелинейной математической физики
    Н. А. Кудряшов
    Основное внимание в книге уделено методам построения аналитических решений нелинейных дифференциальных уравнений. Для уравнений, интегрируемых методом обратной задачи рассеяния: уравнения Кортевега-де Ври-за, нелинейного уравнения Шредингера и уравнения Синус-Гордона - представлены пары Лакса и преобразования Бэклунда, а также изложены схемы решения задач Коши. Для ряда других нелинейных дифференциальных уравнений предложены методы нахождения точных решений. Для демонстрации методов, представленных в книге, выбраны наиболее популярные нелинейные дифференциальные уравнения: уравнение Кортевега-де-Вриза, нелинейное уравнение Шредингера, уравнение Синус-Гордона, уравнение Курамото-Сивашинского, уравнение Гинзбурга-Ландау, уравнение Колмогорова-Петровского-Пискунова, уравнение Бюргерса-Хаксли, уравнение нелинейной теплопроводности и хорошо известные системы дифференциальных уравнений: система Лоренца и система Хенона-Хейлеса. Книгу можно рассматривать как справочник по наиболее известным нелинейным дифференциальным уравнениям и методам их решения. В ней дается вывод известных нелинейных дифференциальных уравнений и предлагается информация о физических процессах, при описании которых они встречаются. Предназначена для студентов, аспирантов и научных работников, интересующихся нелинейными математическими моделями, теорией солитонов и методами построения решений нелинейных дифференциальных уравнений.
  • Вабищевич П.Н.. Метод фиктивных областей в задачах математической физики
    Метод фиктивных областей в задачах математической физики
    Вабищевич П.Н.
    В монографии изложены основы метода фиктивных областей при приближенном решении задач математической физики в сложных областях. Он основан на переходе к задаче в регулярной области, целиком содержащей исходную. Рассмотрены вопросы обоснования такого подхода на дифференциальном уровне при исследовании краевых задач для эллиптических и параболических уравнений, задач на собственные значения. Строятся модификации хорошо известных итерационных методов для решения сеточных задач, возникающих при использовании метода фиктивных областей. Возможности метода фиктивных областей иллюстрируются на примерах решения задач идеальной и вязкой несжимаемой жидкости, фильтрации под гидротехническим сооружением.Для специалистов по прикладному математическому моделированию, студентов старших курсов.
  • В. Барашков. Методы математической физики: Учебное пособие
    Методы математической физики: Учебное пособие
    В. Барашков
    Рассмотрены вопросы математического моделирования процессов, связанных с расчетом собственных частот, форм колебаний устройств, виброперегрузок и расчетами тепловых режимов электронных аппаратов, которые необходимо учитывать при проектировании и эксплуатации радиоэлектронных устройств. Описаны отдельные динамические характеристики элементов конструкций электронной техники, приводимые к системам с сосредоточенными и распределенными параметрами. Предназначено для студентов всех специальностей и направлений укрупненных групп 11.00.00 «Электроника, радиотехника и связь» и 12.00.00 «Фотоника, приборостроение, оптические и биотехнические системы и технологии».
  • В. П. Пикулин, С. И. Похожаев. Практический курс по уравнениям математической физики
    Практический курс по уравнениям математической физики
    В. П. Пикулин, С. И. Похожаев
    Книга представляет собой изложение (демонстрацию) основных методов решения некоторых задач классической математической физики. Рассматриваются метод Фурье, метод конформных отображений, метод функции Грина для уравнений Лапласа и Пуассона на плоскости и в пространстве, способы решения краевых задач для уравнений Гельмгольца, метод возмущений, методы интегральных преобразований (Фурье, Лапласа, Ханкеля) при решении нестационарных краевых задач, а также другие методы для решения эллиптических, гиперболических и параболических задач. В конце каждой главы приводятся задачи для самостоятельного решения и ответы к ним. Для студентов высших учебных заведений, научных работников и инженеров.

© 2017 books.iqbuy.ru