Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • К. К. Рыбников. Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах
    Введение в дискретную математику и теорию решения экстремальных задач на конечных множествах
    К. К. Рыбников
    Учебное пособие содержит основные понятия дискретного анализа, изучение которых определяется учебными стандартами для большинства технических специальностей. Особое внимание автор уделяет связи непрерывного и дискретного математического аппарата. Большое количество задач, методы решения которых подробно проанализированы, дает возможность использовать данный материал не только для построения лекционного курса, но и для проведения практических занятий.
  • В. Н. Сачков. Введение в комбинаторные методы дискретной математики
    Введение в комбинаторные методы дискретной математики
    В. Н. Сачков
    Книга содержит изложение ряда основных комбинаторных методов современной дискретной математики в систематизированном виде. Предпочтение отдается тем методам, которые носят перечислительный характер, наиболее отработаны теоретически и имеют наибольшее число приложений. Книга предназначена для студентов вузов, обучающихся по специальностям "Прикладная математика", "Кибернетика", "Криптография", "Компьютерная безопасность", а также для научных работников, работающих в области прикладной математики, кибернетики, защиты информации и криптографии. Во втором издании добавлена глава IX "Дискретные функции", добавлены разделы к некоторым другим главам, расширен круг задач.
  • И. Х. Сигал, А. П. Иванова. Введение в прикладное дискретное программирование
    Введение в прикладное дискретное программирование
    И. Х. Сигал, А. П. Иванова
    В переработанном издании книги излагаются современные комбинаторные алгоритмы для решения задач дискретного программирования. Рассматриваются особенности этих задач и алгоритмы их решения. Основное внимание уделяется вычислительной реализации алгоритмов. Приводятся результаты экспериментального исследования алгоритмов для классических задач о ранце и о коммивояжере. Разработаны алгоритмы параллельных вычислений и изложены результаты вычислительных экспериментов для задачи о ранце. Приведены задачи для самостоятельной работы. Допущено Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению и специальности "Прикладная математика и информатика".
  • А. Ю. Эвнин. Вокруг теоремы Холла
    Вокруг теоремы Холла
    А. Ю. Эвнин
    В настоящем пособии рассматривается теорема Ф.Холла о системе различных представителей, решающая задачу о свадьбах, и эквивалентные ей теоремы Менгера, Дилворта, Кенига-Эгервари, Форда-Фалкерсона. Показано, что эти теоремы являются проявлением принципа двойственности в линейном программировании. Приведен также венгерский алгоритм решения задачи о назначениях. Книга ориентирована на студентов специальностей "Математика", "Прикладная математика", "Прикладная математика и информатика", "Программная инженерия", изучающих дискретную математику и дискретную оптимизацию.
  • В. П. Оревков, О. А. Оревкова. Дискретная математика для гуманитариев
    Дискретная математика для гуманитариев
    В. П. Оревков, О. А. Оревкова
    Основой пособия является материал курса, который читается одним из авторов на факультете социологии СПбГУ в течение нескольких лет. Изложение теории чередуется с примерам, подводящими читателя к использованию дискретной математики в информационных системах и в управлении базами данных. Книга рассчитана на студентов, специализирующихся по специальности 351400 "Прикладная информатика (по областям применения)".
  • В. В. Куликов. Дискретная математика
    Дискретная математика
    В. В. Куликов
    В пособии рассмотрены элементы математической логики, теории множеств и теории графов, приведены основные принципы комбинаторики. Описаны алгоритмы, позволяющие решать различные задачи с помощью компьютера. Изложены основные понятия теории конечных автоматов. Предназначено для студентов высших учебных заведений, обучающихся по направлениям подготовки дипломированных специалистов "Телекоммуникации", "Информационные системы", "Информатика и вычислительная техника".
  • М. В. Триумфгородских. Дискретная математика и математическая логика для информатиков, экономистов и менеджеров
    Дискретная математика и математическая логика для информатиков, экономистов и менеджеров
    М. В. Триумфгородских
    В книге изложен ряд разделов и вопросов дискретной математики и математической логики, изучаемых главным образом на младших курсах вузов. В данное издание включены не только основные понятия и теоретические положения дисциплины, но также примеры, методы, приемы и алгоритмы решения прикладных задач. Книга может представлять интерес для широкого круга будущих специалистов, бакалавров и магистров соответствующих специальностей и направлении подготовки.
  • С. М. Окулов. Дискретная математика. Теория и практика решения задач по информатике
    Дискретная математика. Теория и практика решения задач по информатике
    С. М. Окулов
    В учебном пособии даны ключевые разделы дискретной математики с практической реализацией алгоритмических решений. Книга написана на основе лекционного курса и практических занятий для студентов факультета информатики Вятского государственного гуманитарного университета, а также спецкурса, читаемого автором для школьников, занимающихся информатикой по углубленной программе. Для студентов высших учебных заведений, а также старшеклассников, углубленно изучающих информатику.
  • Н. П. Редькин. Дискретная математика
    Дискретная математика
    Н. П. Редькин
    В учебнике представлен основной материал обязательного курса "Дискретная математика", читающегося на механико-математическом факультете МГУ с 1998 г. В сжатой форме он содержит для первоначального ознакомления ряд важных разделов дискретной математики: комбинаторный анализ, графы и сети, важнейшие классы управляющих систем, тесты, алгоритмы, кодирование, дискретные экстремальные задачи. К каждой главе приведены задачи, самостоятельное решение которых будет способствовать более глубокому усвоению теоретического материала и лучшей подготовке к экзамену. Для студентов и аспирантов. Рекомендовано УМО по классическому университетскому образованию в качестве учебника для студентов высших учебных заведений, обучающихся по направлениям подготовки 010100 "Математика", 010200 "Математика. Прикладная математика", 011000 "Механика. Прикладная математика".
  • Ю. П. Шевелев. Дискретная математика
    Дискретная математика
    Ю. П. Шевелев
    Представлено пять тем: теория множеств, булева алгебра логики, теория конечных автоматов, комбинаторика и теория графов. Из теории множеств освещены темы: алгебра множеств, бинарные отношения, бесконечные множества, теория нечетких множеств. Из булевой алгебры - минимизация булевых формул в дизъюнктивных и конъюнктивных нормальных формах с учетом неопределенных состояний, булевы уравнения, первые сведения о булевом дифференциальном и интегральном исчислении. Из теории конечных автоматов - синтез логических (комбинационных) и многотактных схем, теорема Поста о функциональной полноте. Из комбинаторики - размещения, сочетания и перестановки с повторениями и без повторений, разбиение множеств и др. Из теории графов - графы и ориентированные графы, сети, деревья и др. Приведено более 2600 задач и упражнений для самостоятельной работы и 620 задач для контрольных работ. Ко всем упражнениям для самостоятельной работы приведены ответы. Для студентов технических специальностей вузов и техникумов, школьников старших классов общеобразовательных школ и для всех желающих самостоятельно пройти вводный курс прикладной дискретной математики.
  • И. А. Мальцев. Дискретная математика
    Дискретная математика
    И. А. Мальцев
    Книга содержит следующие разделы: теория множеств, комбинаторика, графы, математическая логика, конечные автоматы, теория алгоритмов, теория чисел, алгебраические системы. Поскольку дискретная математика обычно читается студентам младших курсов, материал излагается доступно и иллюстрируется многочисленными примерами. Книга адресована студентам, аспирантам и преподавателям вузов, а также лицам, желающим самостоятельно познакомиться с основными разделами дискретной математики.
  • Г. П. Гаврилов, А. А. Сапоженко. Задачи и упражнения по дискретной математике
    Задачи и упражнения по дискретной математике
    Г. П. Гаврилов, А. А. Сапоженко
    В пособие включены задачи и упражнения по конечнозначным логикам (в том числе по алгебре логики), по теории автоматов, теории алгоритмов, теории графов и сетей, теории кодирования, комбинаторике, минимизации булевых функций и синтезу схем и формул, реализующих булевы функции. Имеются задачи, предназначенные для первоначальной проработки и освоения методов дискретной математики, а также задачи для углубленного изучения предмета. Для студентов и преподавателей университетов и технических вузов, в которых изучается дискретная математика.
  • А. М. Райгородский. Системы общих представителей в комбинаторике и их приложения в геометрии
    Системы общих представителей в комбинаторике и их приложения в геометрии
    А. М. Райгородский
    Настоящая брошюра возникла на основе лекций, прочитанных автором на летней математической школе "Современная математика" в Дубне в 2006 году. В ней рассказывается о двух мощных методах современного дискретного анализа - вероятностном и алгебраическом. Оба эти метода широко применяются сейчас для решения различных задач экстремальной комбинаторики. В частности, многие важные аспекты таких классических проблем, как проблема Борсука или проблема отыскания чисел Рамсея, рассматриваются исключительно с позиций вероятностной и алгебраической технологий. В брошюре на наиболее ярких примерах подобных задач излагаются основы методов. Необходимые сведения из (элементарной) теории вероятностей, анализа и алгебры приводятся в конце брошюры в специальном разделе. Брошюра доступна студентам младших курсов и даже школьникам. Однако полезна она может быть всем, кто интересуется комбинаторикой.

© 2017 books.iqbuy.ru