Поиск книг по лучшей цене!

Актуальная информация о наличии книг в крупных интернет-магазинах и сравнение цен.


  • Р. П. Федоренко. Введение в вычислительную физику
    Введение в вычислительную физику
    Р. П. Федоренко
    Книга посвящена описанию методов приближенного решения задач математической физики, возникающих в различных областях. Изложение основных понятий и средств численного анализа доводится до описания специальных алгоритмов решения важных прикладных задач, разработка которых продолжается в настоящее время. Приближенные решения сложных задач получаются как общими средствами вычислительной математики, так и специфическими для данного узкого класса задач приемами, которые позволяют обходить существенные трудности в современной вычислительной работе и делают расчеты посильными для ЭВМ. Для студентов и аспирантов факультетов прикладной математики и физико-технических специальностей вузов с достаточно высоким уровнем преподавания математики, а также для научных работников, специализирующихся в области применения численных методов в научных исследованиях.
  • Л. К. Мартинсон, Ю. И. Малов. Дифференциальные уравнения математической физики. Выпуск 12
    Дифференциальные уравнения математической физики. Выпуск 12
    Л. К. Мартинсон, Ю. И. Малов
    Рассмотрены различные постановки задач математической физики для дифференциальных уравнений и частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др. Содержание учебника соответствует курсу лекций, которые авторы читают в МГТУ им. Н.Э.Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
  • Г. Т. Тарабрин. Методы математической физики
    Методы математической физики
    Г. Т. Тарабрин
    Содержание пособия отвечает требованиям современных программ по математике для технических вузов, предусматривающих изучение методов математической физики. Пособие состоит из четырех частей. В первой части дается краткое изложение теории функций комплексной переменной, включающее в себя дифференциальное и интегральное исчисления, конформные отображения, ряды, вычеты и их приложение. Во второй части излагаются теоретические основы интегральных преобразований Лапласа, Фурье, Ханкеля и приемы решения с их помощью дифференциальных и интегральных уравнений. В третьей части на классических примерах изучаются методы решения задач основных дифференциальных уравнений математической физики. В четвертой части даются основы метода вариаций в задачах с неподвижными границами. Пособие рассчитано на студентов старших курсов технических специальностей, завершивших изучение линейной алгебры, аналитической геометрии, дифференциального и интегрального исчислений.
  • А. В. Омельченко. Методы интегральных преобразований в задачах математической физики
    Методы интегральных преобразований в задачах математической физики
    А. В. Омельченко
    Пособие предназначено для студентов, изучающих математические основы современной теоретической и прикладной физики: Его главная цель - изложить теоретические основы и развить практические навыки решения уравнений в частных производных с начально-краевыми условиями. Для решения начально-краевых задач с неоднородностями методы классической теории интегральных преобразований излагаются в сочетании с методами теории обобщенных функций и обобщенных решений. Основное внимание уделяется описанию практических методов решения в обобщенных функциях. Книга примерно соответствует годовому курсу математической физики.
  • Н. А. Кудряшов. Методы нелинейной математической физики
    Методы нелинейной математической физики
    Н. А. Кудряшов
    Основное внимание в книге уделено методам построения аналитических решений нелинейных дифференциальных уравнений. Для уравнений, интегрируемых методом обратной задачи рассеяния: уравнения Кортевега-де Ври-за, нелинейного уравнения Шредингера и уравнения Синус-Гордона - представлены пары Лакса и преобразования Бэклунда, а также изложены схемы решения задач Коши. Для ряда других нелинейных дифференциальных уравнений предложены методы нахождения точных решений. Для демонстрации методов, представленных в книге, выбраны наиболее популярные нелинейные дифференциальные уравнения: уравнение Кортевега-де-Вриза, нелинейное уравнение Шредингера, уравнение Синус-Гордона, уравнение Курамото-Сивашинского, уравнение Гинзбурга-Ландау, уравнение Колмогорова-Петровского-Пискунова, уравнение Бюргерса-Хаксли, уравнение нелинейной теплопроводности и хорошо известные системы дифференциальных уравнений: система Лоренца и система Хенона-Хейлеса. Книгу можно рассматривать как справочник по наиболее известным нелинейным дифференциальным уравнениям и методам их решения. В ней дается вывод известных нелинейных дифференциальных уравнений и предлагается информация о физических процессах, при описании которых они встречаются. Предназначена для студентов, аспирантов и научных работников, интересующихся нелинейными математическими моделями, теорией солитонов и методами построения решений нелинейных дифференциальных уравнений.
  • В. П. Пикулин, С. И. Похожаев. Практический курс по уравнениям математической физики
    Практический курс по уравнениям математической физики
    В. П. Пикулин, С. И. Похожаев
    Книга представляет собой изложение (демонстрацию) основных методов решения некоторых задач классической математической физики. Рассматриваются метод Фурье, метод конформных отображений, метод функции Грина для уравнений Лапласа и Пуассона на плоскости и в пространстве, способы решения краевых задач для уравнений Гельмгольца, метод возмущений, методы интегральных преобразований (Фурье, Лапласа, Ханкеля) при решении нестационарных краевых задач, а также другие методы для решения эллиптических, гиперболических и параболических задач. В конце каждой главы приводятся задачи для самостоятельного решения и ответы к ним. Для студентов высших учебных заведений, научных работников и инженеров.
  • Е. А. Власова, В. С. Зарубин, Г. Н. Кувыркин. Приближенные методы математической физики. Выпуск 13
    Приближенные методы математической физики. Выпуск 13
    Е. А. Власова, В. С. Зарубин, Г. Н. Кувыркин
    Книга является тринадцатым выпуском серии учебников `Математика в техническом университете`. Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э.Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
  • Б. М. Будак, А. А. Самарский, А. Н. Тихонов. Сборник задач по математической физике
    Сборник задач по математической физике
    Б. М. Будак, А. А. Самарский, А. Н. Тихонов
    Сборник содержит задачи на вывод уравнений и граничных условий. Большое внимание уделяется различным методам решения краевых задач математической физики. Наряду с ответами к задачам приводятся указания, а для многих задач - решения, иллюстрирующие применение основных методов. Для студентов университетов.
  • А. Ф. Никифоров, В. Б. Уваров. Специальные функции математической физики
    Специальные функции математической физики
    А. Ф. Никифоров, В. Б. Уваров
    Классические ортогональные полиномы, сферические и гипергеометрические функции, а также функции Бесселя рассматриваются с единой точки зрения как частные решения возникающего во многих задачах математической физики и квантовой механики дифференциального уравнения определенного типа. Для решений этого уравнения с помощью обобщения формулы Родрига найдено интегральное представление, из которого получены все основные свойства специальных функций. Построена также теория классических ортогональных полиномов дискретной переменной как на равномерных, так и неравномерных сетках, установлена их связь с коэффициентами Клебша-Гордана и коэффициентами Рака. Рассматриваются приложения к задачам математической физики, квантовой механики и вычислительной математики. Книга предназначена для студентов и аспирантов, научных работников и инженеров-исследователей, а также для всех, имеющих дело с математическими расчетами. Она может быть использована при изучении теоретической и математической физики.
  • А. Д. Полянин, В. Ф. Зайцев. Справочник. Нелинейные уравнения математической физики
    Справочник. Нелинейные уравнения математической физики
    А. Д. Полянин, В. Ф. Зайцев
    Книга содержит точные решения около 1200 нелинейных уравнений математической физики и механики. Рассматриваются уравнения параболического, гиперболического, эллиптического и других типов. Описано много новых решений нелинейных уравнений. Особое внимание уделено уравнениям общего вида, которые зависят от произвольных функций. Помимо уравнений второго порядка рассматриваются также уравнения третьего, четвертого и более высоких порядков. В целом справочник содержит больше нелинейных уравнений математической физики и точных решений, чем любые другие книги. Приведены решения уравнений, встречающихся в различных областях теоретической физики, механики и химической технологии (в теории тепло- и массопереноса, теории волн, гидродинамике, нелинейной акустике, теории горения, нелинейной оптике, ядерной физике). В приложении описаны методы обобщенного и функционального разделения переменных. Рассмотрены конкретные примеры применения этих методов для построения точных решений нелинейных уравнений с частными производными. Справочник предназначен для широкого круга научных работников, преподавателей вузов, инженеров и студентов, специализирующихся в различных областях математики, физики, механики, теории управления и инженерных наук.
  • Е. В. Захаров, И. В. Дмитриева, С. И. Орлик. Уравнения математической физики
    Уравнения математической физики
    Е. В. Захаров, И. В. Дмитриева, С. И. Орлик
    В учебнике представлен материал для первоначального изучения уравнений математической физики: даны математические постановки задач для уравнений в частных производных (теплопроводности, Лапласа, волнового); приведены доказательства теорем единственности, существования и устойчивости их решений; описаны методы построения решений. Для студентов высших учебных заведений.

© 2017 books.iqbuy.ru